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Reviews

> Notations
> C: a class of subsets of a set 5, A C S: a finite set;
> trace(C)on A={ANC: CeC}
» AC(A): the cardinality of trace of the class C on A;

> Let m“(k) = sup AC(A).
ACS

Card(A)=k

» Definition 3.6.1 C is VC class if

© min{k: m®(k) < 25} if m©(k) < 2* for some k < oo
v(C) :=

00 otherwise

is finite.



VC Subgraph

» Definition 3.6.8 The subgraph of a real function fon S is the set
Gr={(s,t):se S, teR,t<f(s)}.

A class of functions F is VC subgraph of index v if the class of sets
C={Gs: fe F}is VC of index v.



VC Subgraph

» Examples

1. Suppose C is a VC class of index v(C), then F := {Ic: Ce€ C} is VC
subgraph of index v(C).

2. (Lemma 2.6.15, VW1996) Any finite-dimensional vector space F of
measurable functions f: S — R is VC subgraph of index < dim(F) + 1.

> Main result (Thm 3.6.9) shows that the LP(P)-covering numbers of F

admit small bounds, of the order of ¢~ ~Y? uniformly in P.



» Theorem 3.6.9 (Dudley-Pollard) Let F be a non-empty VC subgraph
class of functions admitting an envelope F € LP(S, S, P) for some
1 < p < c0. Suppose that the class C of subgraphs of the function in F
has index v. Set m,,, = max{m € N : logm > m*/(*=D=1/"} for

w> v —1. Then

p+1\ W
D(F,LP(P), €||Fllp) < mywV {2'”/(”_1) (27) ] , forall w> v—1.
€
(3.233)



Proof of Theorem 3.6.9

> Let f1,...,fn be a maximal collection of functions in F with
Pifi— £i|” > PF?, i# ],

so that m = D(F, LP(P), €||F||,) and let C; be the subgraph of f;.

> We calculate the probability that at least two graphs have same
intersection with sample {(s;, tj),j=1,..., k} and let k be s.t. this
probability is less than 1. Then there exists a set of k(< (271 /¢P) log m)
sample s.t. GG C,i=1,..., m intersect different subsets of this set,

hence m®(k) > m.

» By Cor. 3.6.5,

p+1 v-1
m< mC(k) <2k <2 2 log m ,
€P

and some algebra gives the desired bound.



Application of Theorem 3.6.9

1 n
V(P — P = S (1) ~ P
Vi s
» Using Theorem 3.5.1, 3.5.4,if 0 € F,
VI1Paf?|

EVAlP, — Pl < SV2E [ [ vieganE L2<Pn>,r>dr]

1
<S8VEIFli [ sup | flog2D(F, L3(Q) el Flis @) de
0

Q:finitely discrete
1

S Al | ViogtAzede
0

where A only depends on v.



VC type

» By Thm. 3.6.9, if F is VC subgraph, then, for any probability measure P
on (§,8),

A 2w
NCE, (Pl i) < (2)
where w > v and A depending on v, w.

» Definition 3.6.10 A class of measurable functions is of VC type w.r.t.
measurable envelope F of F if there exist fininte constants A, w s.t. for all

probability measures Q on (S, S)

N(F, L(Q), ell Flli2(q) < (A/€)".



» Given 1 < p < 00, a function f: R +— R is of bounded p-variation if the

quantity

f)—sup{fo, fixi—1)|? :—oo<xo<---<xn<oo,n€N}

is finite.
» Proposition 3.6.12 Let f be a function of bounded p-variation, p > 1.

Then the collection F of translations and dilations of f
F={x— fltx—s):t>0,s € R}

is of VC type.



Expansion to Density Estimation

> In the density estimation based on convolution kernels, the corresponding

class of functions is
K={K((t—")/h):te R, h> 0},

where K is a function of bounded variation.

> In the case of wavelet density estimators, the corresponding class of

functions is

Fo = {Z¢(2jy— K(2() = k) :y e R,jeNU{O}},

kEZ
where ¢ is an a-Holder continuous function with bounded support for
some o € (0, 1].

» Properties of convolution or of wavelet density estimators follow as a

consequence of the fact that these classes are of VC type.



VC Hull

> Definition 3.6.13 Given a class of functions F, co(F) is defined as the

convex hull of F,
co(F) = {Z)\ff; fe }‘72)\,(: 1, Ar > 0, Ar # 0 only for finitely many f} ,
feF f

and ¢o(F) is defined as the pointwise sequential closure of co(F). If F is

VC subgraph, then ¢o(F) is a VC hull class of functions.



Theorem 3.6.17

» Theorem 3.6.17 Let Q be a probability measure on (S,S) and let F be a

collection of measurable functions with envelope F € L?*(Q) s.t.
N(F, (@, el Fliz)) < Ce™ 0<e<1,
Then there exists a constant K depending only on C and w s.t.

log N(T0(F), L7(Q), ellFlli2 ) ) < Ke >/, 0<e< 1.



Example

> Example 3.6.14 Let F be the class of monotone nondecreasing functions

f:R —[0,1]. Then F C ¢0o(G), where G = {I(x o), I|x00) : X € R}.
» Note that N(G, L*(Q),¢) < 2¢™2 [Special case of Exercise 3.6.6].
» By Thm. 3.6.17, we have

log N(F, L%(Q),¢) < K/e, 0<e<1,

for some K < oo.



Proof of Theorem 3.6.17

v

W.L.O.G, we assume F is finite.
> Setu=1+Land L= C/"|F|zq)
> Since N(F, L*(Q), €|l Flli2(q) < Ce ™, we have

N(F, L*(Q), Ln~ /") < n,

and let F, denote the collection of the centres of such a covering.

> It is enough to show that there exist constant Cy, Dy s.t.

supey max(Ck, Dk) < 00, and g > 1, satisfying
log N(co(Fka), L*(Q), Ckln™") < Dyn, n k> 1. (3.240)

> Note that given n, there exist k < oo s.t. Fpa = F.



Proof of Theorem 3.6.17

» Lemma 3.6.16 Let F be a collection of measurable functions with
envelope F € L*(Q) s.t. N(F, L*(Q), €||Fll;2(q) < Ce ¥, 0<e<1.
Set u, L as in a previous page. For each n € N, let F, be a maximal
Ln~*/"_separated subset of F for the L?(@)-norm. Then there exists

C1 < oo depending only on C and w s.t.
log N(co(}'n), 12(Q), Can—”) <n, neN.

» Using Lemma 3.6.16, (3.240) holds for k=1 and all n with C; < oo and
D, =1.



Proof of Theorem 3.6.17

> For a induction, assume that (3.240) holds for k — 1 and all n.
> And we have
co(Fnka) € co(Fnk—1)a) + co(Gn,k),
where G, x is a collection of at most nk? functions of L*(Q)-norm at most
L(n(k—1)7)~1/w,

» Using Lemma 3.6.15 with e = Lk~ 2n™"/(2L(n(k — 1)9)1/2), (3.240)
holds for k and for all n.

» Lemma 3.6.15 Let F = {f1,..., f,} be a collection of n functions in

L2(@). Then, for all € > 0,

N(co(F), L*(Q), e(diamF)) < (e + en€2)2/e2.
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