Mathematical Foundations of Infinite-Dimensional Statistical Models

Chap. 3.6.2 - 3.6.3

Evarist Giné, Richard Nickl

Presenter: Sarah Kim 2019.01.11

Contents

3.6.2 VC Subgraph Classes of Functions

3.6.3 VC Hull and VC Major Classes of Functions

Reviews

- Notations
 - $ightharpoonup \mathcal{C}$: a class of subsets of a set S, $A\subseteq S$: a finite set;
 - ▶ trace(C) on $A = \{A \cap C : C \in C\}$;
 - $\Delta^{\mathcal{C}}(A)$: the cardinality of trace of the class \mathcal{C} on A;
- $\blacktriangleright \ \, \mathsf{Let} \,\, \mathit{m}^{\mathcal{C}}(\mathit{k}) = \sup_{\substack{A \subseteq \mathit{S} \\ \mathsf{Card}(\mathsf{A}) = \mathit{k}}} \Delta^{\mathcal{C}}(\mathit{A}).$
- **Definition 3.6.1** C is VC class if

$$\nu(\mathcal{C}) := \begin{cases} \min\{k : m^{\mathcal{C}}(k) < 2^k\} & \text{if } m^{\mathcal{C}}(k) < 2^k \text{ for some } k < \infty \\ \infty & \text{otherwise} \end{cases}$$

is finite.

VC Subgraph

Definition 3.6.8 The subgraph of a real function f on S is the set

$$G_f = \{(s, t) : s \in S, t \in \mathbb{R}, t \leq f(s)\}.$$

A class of functions $\mathcal F$ is VC subgraph of index ν if the class of sets $\mathcal C=\{G_f\colon f\in\mathcal F\}$ is VC of index $\nu.$

VC Subgraph

Examples

- 1. Suppose $\mathcal C$ is a VC class of index $\nu(\mathcal C)$, then $\mathcal F:=\{\mathbf I_{\mathcal C}: \mathcal C\in \mathcal C\}$ is VC subgraph of index $\nu(\mathcal C)$.
- 2. (Lemma 2.6.15, VW1996) Any finite-dimensional vector space \mathcal{F} of measurable functions $f: S \to \mathbb{R}$ is VC subgraph of index $\leq \dim(\mathcal{F}) + 1$.
- Main result (Thm 3.6.9) shows that the $L^p(P)$ -covering numbers of \mathcal{F} admit small bounds, of the order of $e^{-(\nu-1)p}$, uniformly in P.

▶ Theorem 3.6.9 (Dudley-Pollard) Let $\mathcal F$ be a non-empty VC subgraph class of functions admitting an envelope $F \in L^p(S,\mathcal S,P)$ for some $1 \leq p < \infty$. Suppose that the class $\mathcal C$ of subgraphs of the function in $\mathcal F$ has index ν . Set $m_{\nu,w} = \max\{m \in \mathbb N : \log m \geq m^{1/(\nu-1)-1/w}\}$ for $w > \nu - 1$. Then

$$D(\mathcal{F}, L^{p}(P), \epsilon ||F||_{p}) \leq m_{\nu, w} \vee \left[2^{w/(\nu-1)} \left(\frac{2^{p+1}}{\epsilon^{p}}\right)^{w}\right], \text{ for all } w > \nu - 1.$$
(3.233)

▶ Let f_1, \ldots, f_m be a maximal collection of functions in \mathcal{F} with

$$P|f_i - f_j|^p > \epsilon^p PF^p, \quad i \neq j,$$

so that $m = D(\mathcal{F}, L^p(P), \epsilon ||F||_p)$ and let C_i be the subgraph of f_i .

- We calculate the probability that at least two graphs have same intersection with sample $\{(s_j,t_j),j=1,\ldots,k\}$ and let k be s.t. this probability is less than 1. Then there exists a set of $k(\leq (2^{p+1}/\epsilon^p)\log m)$ sample s.t. $C_i \in \mathcal{C}, i=1,\ldots,m$ intersect different subsets of this set, hence $m^{\mathcal{C}}(k) \geq m$.
- ▶ By Cor. 3.6.5,

$$m \le m^{\mathcal{C}}(k) \le 2k^{\nu-1} \le 2\left(\frac{2^{p+1}}{\epsilon^p}\log m\right)^{\nu-1},$$

and some algebra gives the desired bound.

Application of Theorem 3.6.9

$$\sqrt{n}(P_n - P)f = \frac{1}{\sqrt{n}} \sum_{i=1}^n (f(X_i) - Pf)$$

▶ Using Theorem 3.5.1, 3.5.4, if $0 \in \mathcal{F}$,

$$\begin{split} E\sqrt{n}\|P_n - P\|_{\mathcal{F}} &\leq 8\sqrt{2}E\left[\int_0^{\sqrt{\|P_n\ell^2\|}_{\mathcal{F}}} \sqrt{\log 2D(\mathcal{F}, L^2(P_n), \tau)}d\tau\right] \\ &\leq 8\sqrt{2}\|F\|_{L^2(P)} \int_0^1 \sup_{Q: \text{finitely discrete}} \sqrt{\log 2D(\mathcal{F}, L^2(Q), \epsilon\|F\|_{L^2(Q)})}d\epsilon \\ &\lesssim \|F\|_{L^2(P)} \int_0^1 \sqrt{\nu \log(A/\epsilon)}d\epsilon, \end{split}$$

where A only depends on ν .

VC type

▶ By Thm. 3.6.9, if $\mathcal F$ is VC subgraph, then, for any probability measure P on $(S,\mathcal S)$,

$$N(\mathcal{F}, L^2(P), \epsilon ||F||_{L^2(P)}) \le \left(\frac{A}{\epsilon}\right)^{2w},$$

where $w > \nu$ and A depending on ν , w.

▶ **Definition 3.6.10** A class of measurable functions is of VC type w.r.t. measurable envelope F of \mathcal{F} if there exist fininte constants A, w s.t. for all probability measures Q on (S, \mathcal{S})

$$N(\mathcal{F}, L^2(Q), \epsilon ||F||_{L^2(Q)}) \le (A/\epsilon)^w.$$

▶ Given $1 \le p < \infty$, a function $f: \mathbb{R} \mapsto \mathbb{R}$ is of bounded p-variation if the quantity

$$v_p(f) := \sup \left\{ \sum_{i=1}^n |f(x_i) - f(x_{i-1})|^p : -\infty < x_0 < \dots < x_n < \infty, n \in \mathbb{N} \right\}$$

is finite.

Proposition 3.6.12 Let f be a function of bounded p-variation, p ≥ 1.
Then the collection F of translations and dilations of f

$$\mathcal{F} = \{ x \mapsto f(tx - s) : t > 0, s \in \mathbb{R} \}$$

is of VC type.

Expansion to Density Estimation

▶ In the density estimation based on convolution kernels, the corresponding class of functions is

$$\mathcal{K} = \{ K((t - \cdot)/h) : t \in \mathbb{R}, h > 0 \},$$

where K is a function of bounded variation.

▶ In the case of wavelet density estimators, the corresponding class of functions is

$$\mathcal{F}_{\phi} = \left\{ \sum_{\mathbf{k} \in \mathbb{Z}} \phi(2^{\mathbf{j}}\mathbf{y} - \mathbf{k}) \phi(2^{\mathbf{j}}(\cdot) - \mathbf{k}) : \mathbf{y} \in \mathbb{R}, \mathbf{j} \in \mathbb{N} \cup \{0\} \right\},$$

where ϕ is an α -Hölder continuous function with bounded support for some $\alpha \in (0,1]$.

Properties of convolution or of wavelet density estimators follow as a consequence of the fact that these classes are of VC type.

VC Hull

▶ **Definition 3.6.13** Given a class of functions \mathcal{F} , $co(\mathcal{F})$ is defined as the convex hull of \mathcal{F} ,

$$co(\mathcal{F}) = \left\{ \sum_{\mathbf{f} \in \mathcal{F}} \lambda_{\mathbf{f}} \mathbf{f} \colon \mathbf{f} \in \mathcal{F}, \sum_{\mathbf{f}} \lambda_{\mathbf{f}} = 1, \lambda_{\mathbf{f}} \geq 0, \lambda_{\mathbf{f}} \neq 0 \text{ only for finitely many } \mathbf{f} \right\},$$

and $\overline{co}(\mathcal{F})$ is defined as the pointwise sequential closure of $co(\mathcal{F})$. If \mathcal{F} is VC subgraph, then $\overline{co}(\mathcal{F})$ is a VC hull class of functions.

Theorem 3.6.17

▶ Theorem 3.6.17 Let Q be a probability measure on (S, S) and let F be a collection of measurable functions with envelope $F \in L^2(Q)$ s.t.

$$\label{eq:local_equation} \textit{N}\Big(\mathcal{F}, \textit{L}^2(\textit{Q}), \epsilon \|\textit{F}\|_{\textit{L}^2(\textit{Q})}\Big) \leq \textit{C}\epsilon^{-\textit{w}}, \ \ 0 < \epsilon \leq 1.$$

Then there exists a constant K depending only on C and w s.t.

$$\log \mathit{N}\Big(\overline{\mathit{co}}(\mathcal{F}), \mathit{L}^{2}(\mathit{Q}), \epsilon \|\mathit{F}\|_{\mathit{L}^{2}(\mathit{Q})}\Big) \leq \mathit{K}\epsilon^{-2\mathit{w}/(\mathit{w}+2)}, \quad 0 < \epsilon \leq 1.$$

Example

- ▶ **Example 3.6.14** Let \mathcal{F} be the class of monotone nondecreasing functions $f \colon \mathbb{R} \to [0,1]$. Then $\mathcal{F} \subseteq \overline{co}(\mathcal{G})$, where $\mathcal{G} = \{\mathbf{I}_{(x,\infty)}, \mathbf{I}_{[x,\infty)} : x \in \mathbb{R}\}$.
- ▶ Note that $N(\mathcal{G}, L^2(Q), \epsilon) \le 2\epsilon^{-2}$ [Special case of Exercise 3.6.6].
- ▶ By Thm. 3.6.17, we have

$$\log \textit{N}(\mathcal{F},\textit{L}^2(\textit{Q}),\epsilon) \leq \textit{K}/\epsilon, \ \ 0 < \epsilon < 1,$$

for some $K < \infty$.

- ightharpoonup W.L.O.G, we assume $\mathcal F$ is finite.
- ▶ Set $u = \frac{1}{2} + \frac{1}{w}$ and $L = C^{1/w} ||F||_{L^2(Q)}$.
- ▶ Since $N(\mathcal{F}, L^2(Q), \epsilon ||F||_{L^2(Q)}) \leq C\epsilon^{-w}$, we have

$$N(\mathcal{F}, L^2(Q), Ln^{-1/w}) \leq n,$$

and let \mathcal{F}_n denote the collection of the centres of such a covering.

It is enough to show that there exist constant C_k , D_k s.t. $\sup_{k\in\mathbb{N}}\max(C_k,D_k)<\infty$, and q>1, satisfying

$$\log N(co(\mathcal{F}_{nk^q}), L^2(Q), C_k L n^{-u}) \le D_k n, \quad n, k \ge 1.$$
 (3.240)

▶ Note that given n, there exist $k < \infty$ s.t. $\mathcal{F}_{nk^q} = \mathcal{F}$.

▶ Lemma 3.6.16 Let $\mathcal F$ be a collection of measurable functions with envelope $F \in L^2(Q)$ s.t. $N(\mathcal F, L^2(Q), \epsilon \|F\|_{L^2(Q)}) \leq C\epsilon^{-w}, \ \ 0 < \epsilon \leq 1.$ Set u, L as in a previous page. For each $n \in \mathbb N$, let $\mathcal F_n$ be a maximal $Ln^{-1/w}$ -separated subset of $\mathcal F$ for the $L^2(Q)$ -norm. Then there exists $C_1 < \infty$ depending only on C and w s.t.

$$\log N\Big(co(\mathcal{F}_n),L^2(\mathit{Q}),\mathit{C}_1Ln^{-u}\Big) \leq n, \ n \in \mathbb{N}.$$

▶ Using Lemma 3.6.16, (3.240) holds for k = 1 and all n with $C_1 < \infty$ and $D_1 = 1$.

- ▶ For a induction, assume that (3.240) holds for k-1 and all n.
- And we have

$$co(\mathcal{F}_{nk^q}) \subseteq co(\mathcal{F}_{n(k-1)^q}) + co(\mathcal{G}_{n,k}),$$

where $\mathcal{G}_{n,k}$ is a collection of at most nk^q functions of $L^2(Q)$ -norm at most $L(n(k-1)^q)^{-1/w}$.

- ▶ Using Lemma 3.6.15 with $\epsilon = Lk^{-2}n^{-u}/(2L(n(k-1)^q)^{-1/2})$, (3.240) holds for k and for all n.
- ▶ **Lemma 3.6.15** Let $\mathcal{F} = \{f_1, \dots, f_n\}$ be a collection of n functions in $L^2(Q)$. Then, for all $\epsilon > 0$,

$$N(co(\mathcal{F}), L^2(Q), \epsilon(\operatorname{diam}\mathcal{F})) \leq (e + en\epsilon^2)^{2/\epsilon^2}.$$